陳郁喬

Yu-chiao Chen

碩士論文 (2009)

知識商務之技術型知識商品價值評估方法研究

Development of a Technological Knowledge Product Valuation Method for knowledge Commerce

關鍵字 Keywords

決策支援, 知識資產, 知識商務, 知識價值評估

knowledge commerce, decision-making support, knowledge valuation, knowledge asset

摘要

近年來,隨著網際網路及線上交易技術的成熟,技術知識的交易由以往的技術市場,逐漸轉型為新的交易型態—知識商務(Knowledge Commerce)。在買賣雙方眾多且無法獲知雙方實際身份背景的電子化交易環境下,因知識商品無形性與市場資訊不對稱性,使得眾多技術型知識商品的價值不明,為能提高交易之公平性,減少網路詐欺之行為,本研究發展一知識需求者評選所需知識商品或知識供應者決定商品最適價格時之決策支援方法,以技術知識價值本體為基來推估技術型知識商品的價值,提高知識商務交易之公平性與可靠性。

本研究首先從價值評估之現況探討與知識商務環境特性分析,界定出「研發者能量」、「供應者聲譽」、「複雜性」、「創新性」與「知識內容市場價值」五個價值評估指標與價值評估程序,接著設計各指標之評估方法,最後實作一價值評估系統驗證本方法之可行性。

Abstract

In recent years, with the maturity of the Internet and on-line transaction technology, technological knowledge trading methods have been gradually transformed from traditional technological knowledge markets into electronic-based knowledge commerce (k-commerce). In the k-commerce environment, which includes a number of buyers and sellers, it is difficult to identify the actual identities and backgrounds of these buyers and sellers. Furthermore, due to the intangible nature of knowledge and asymmetric information about knowledge transactions, the value of technological knowledge products is unclear and not easily identified. To improve transaction fairness and to reduce deceptions in the Internet-based knowledge transaction environment, this study develops a decision-making support method that helps knowledge requesters to select knowledge products, and knowledge suppliers to determine knowledge price. This method estimates knowledge value based on a technological knowledge value ontology proposed by this study.

This study first surveys the current status of technological valuation and analyzes the characteristics of the k-commerce environment to identify five knowledge value evaluation indicators, including developer capacity, supplier reputation, knowledge complexity, innovation, and marketable value. This study then develops assessment methods for each of these indicators. Finally, this study implements a knowledge valuation system to verify the feasibility of the proposed methods.