蔡維仁

William Wei-Jen Tsai (a.k.a. xturtle)

博士論文 (2010)

臉部特徵為基之情緒轉折辨識及調適方法研究

Research on Methodology of Facial-Feature Based Emotion Transition Recognition and Regulation

關鍵字 Keywords

情緒辨識 、機器學習

Emotion Recognition, Machine Learning

摘要

在後 COVID-19 時代社會活動有限、分離和孤立的情況下,情感健康變得至關重要。支持人機互動的智能系統需具備滿足情緒反應需求的能力,如仿生機器人、智慧型代理人等。為了及時對情緒做出適當的應對,特別是負面情緒,電腦能夠感知情緒轉變之前兆是至關重要的。本研究的主要目標是開發情緒辨識和調適框架(Emotion R-R Framework),使電腦能夠識別基於臉部特徵的人類情緒,其中包括了情緒轉換辨識機制(ETRM)和情緒調適機制(ERM)。此外,本研究還進行了收集數據和模型驗證的實驗。ETRM 植基於滑動視窗技術和支持向量機(SVM)來建構分類器以識別情緒。本研究使用資訊增益法 (IG) 和卡方法來驗證穩健的特徵集,並分別檢驗具不同滑動視窗參數的分類器之有效性。實驗結果證實所提出的方法具有足夠的辨識力:基本情緒和轉折情緒的識別率分別為99.13%和 92.40%。此外,透過特徵選擇,訓練時間提高了 4.45 倍,基本情緒和轉折情緒的識別率分別為 97.97% 和 87.49%。為了證實本研究之應用性,本研究以數學數位學習環境作為驗證環境進行實驗,以評估本研究之有效性。情緒辨識分類器的結果平均辨識率達到了 93.34%,本次實驗的參與者表現出從基線期到干預期的負向行為在統計學上顯著減少(p=0.00002),且數學學習成績顯著提高(p=0.0045);然而,參與者對情緒調適干預後的反應各不相同。最後本文針對研究和實務的影響作出討論。

Abstract

Under the circumstance of limited, separated, and isolated social activities in the post-COVID-19 era, sentimental health becomes essential. The human interaction-enabled intelligent system requires the capability to meet the emotional response requirements, such as humanoid robots, intelligent agents. To deliver a proper response of emotion in time, primarily negative emotion, sensing emotion transition as forewarning is critical. This study's main objective is to develop the Emotion Recognition-and-Response Framework (Emotion R-R Framework) for enabling the computer to recognize human emotion transitioning from facial features, including the Emotion Transition Recognition Mechanism (ETRM) and the Emotional Response Mechanism (ERM). Also, this study conducted experiments for collecting data and model validation. The proposed method used the sliding window technique and support vector machine (SVM) to build classifiers to recognize emotions. This study used Information Gain (IG) and Chi-square to determine the robust feature set and examined the effectiveness of classifiers with different parameters of sliding windows. The experimental results confirmed that the proposed method has sufficient discriminatory capability. The recognition rates for basic emotions and transitional emotions were 99.13 and 92.40%, respectively. Also, through feature selection, training time was accelerated by 4.45 times, and the recognition rates for basic emotions and transitional emotions were 97.97 and 87.49%, respectively. This study experimented in a mathematical e-learning context to evaluate the performance of e-learning and the effectiveness of emotion regulation. The results of the emotion recognition classifier reached a 93.34% average recognition rate, and the participants of this experiment displayed a statistically significant decrease in targeted negative behaviors from baseline to intervention (p=0.00002) and significant improvements in mathematics learning performance (p=0.0045); however, responses to emotion regulation intervention varied among the participants. Implications for research and practice are discussed.

碩士論文 (2010)

支援數位合作學習之專家智識學習引導研究

A Study of Expertise-Based Learning Guidance for Cooperative e-Learning

關鍵字 Keywords

合作學習, 學習鷹架, 後設認知, 專家智識

Cooperative Learning, Scaffolding, Meta-Cognition, Expertise

摘要

近年來,合作學習的方式越來越受到重視。然而合作式學習並非解決學生學習問題之萬靈丹,研究指出認知性及社會性的變因將削弱合作式學習之優勢。本研究由認知性問題著手,以資訊科技為輔助,設計一數位化合作式學習引導機制,基於專家智識構成之學習鷹架以改善學習者之認知情形,協助數位化合作學習流程,使學習者清楚學習目標,加強認知技能,並促進深度理解。

Abstract

Cooperative learning is widely applied in education. However, it is not an ultimate solution for solving students' learning problems. Previous researches have shown that cognitive and social factors may weaken cooperative learning's benefits. In this paper, we proposed an expertise-based learning guidance mechanism to aid learner's cognitive process in cooperative learning, with a focus on learning destination, enhancing cognitive skills, and increasing students' comprehension.

研究方向 Research Interests

  • Methodologies of Recognizing Emotion

  • Affective Computing

  • Cooperative e-Learning

  • Meta-Cognitive Based Knowledge Management

  • Applications of Information Retrieval

  • Applications of Machine Learning

研究成果 Publications

  • Journal

    • Chu, H.-C., Tsai, W. W.-J., Liao, M.-J., Chen, Y.-M. (2017), Facial Emotion Recognition with Transition Detection for Students with High Functioning Autism in Adaptive e-Learning, Soft Computing (Online) (SCI IF=2.367, 45/132, 5y SCI IF=2.204 @ 2017) doi:10.1007/s00500-017-2549-z.

    • Chu, H.-C., Tsai, W. W.-J., Liao, M.-J., Chen, Y.-M., Chen, J.-Y. (2020). Supporting E-Learning with Emotion Regulation for Students with Autism Spectrum Disorder. Educational Technology & Society, 23 (4), 124–146. (SCI IF=2.086, 88/263, 5y SCI IF=2.720 @2019)


  • Conference

    • Chu, H.C., Tsai, W.W.J., Liao, M.J., Cheng, W.K., Chen, Y.M. & Wang, S.C. (2013). Facial Expression Based Real-Time Emotion Recognition Mechanism for Students with High-Functioning Autism. In J. Herrington, A. Couros & V. Irvine (Eds.), Proceedings of EdMedia: World Conference on Educational Media and Technology 2013 (pp. 1165-1173). Association for the Advancement of Computing in Education (AACE).

    • Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William W.-J. Tsai, Yuh-Min Chen(2012), Emotion Classification for Students with Autism in Mathematics e-learning using Physiological and Facial Expression Measures, WASET 2012, Paris, France (EI).

    • Hui-Chuan Chu, Min-Ju Liao, William W.-J. Tsai and Yuh-Min Chen (2011), On Development of Expertise-Based Learning Guidance for Cooperative e-Learning, e-Learn 2011, Honolulu, HI, USA.

碩士班以前研究成果 (Publications Before 2010)

  • Journal

    • Kun-Lin Hsieh*, William Tsai, Neng-Mu. Shih, (2007), Applying PC-cluster into Clustering Analysis for Organism’s Codon Usage Based on MPI Techniques, WSEAS Transactions on Computers, 6(8), pp.1044-1049 (EI)

    • Kun-Lin Hsieh, Cheng-Chang Jeng, William Tsai, Chun-Hung Lee, (2006), “Computational Resource Integration via PC Cluster: A Case Study at Taiwanese University”, WSEAS Transaction on Computers, 5(12), pp.3091-3098. (EI)


  • Conference

    • 朱慧娟、廖敏如、蔡維仁、溫俊誠、陳裕民,支援數位合作學習之專家智識學習引導,2010資訊管理暨電子商務經營管理研討會,2010年5月14~15日,台灣台東。

    • William Tsai, Neng-Mu Shih, and Kun-Lin Hsieh. 2007. Achieving organism clustering analysis by using PC cluster architecture with MPI techniques. In Proceedings of the 11th WSEAS International Conference on Computers (ICCOMP'07), N. E. Mastorakis, S. Kartalopoulos, D. Simian, A. Varonides, V. Mladenov, Z. Bojkovic, and E. Antonidakis (Eds.). World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 537-541.

    • Kun-Lin Hsieh, Cheng-Chang Jeng, William Tsai, and Chun-Hung Lee. 2006. " Systematic viewpoint for integrating computational resources by using the technique of PC cluster". In Proceedings of the 6th WSEAS International Conference on Systems Theory & Scientific Computation (ISTASC'06), Athina Lazakidou and Konstantinos Siassiakos (Eds.). World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 53-57.