吳俊翰

Jyun-HanWu

碩士論文(2017)

網路資料為基之產品演化歷程挖掘與預測方法研發

Development of Method for Web Information-based Product Evolution Process Mining and Prediction

關鍵字 Keywords

網路資料、產品演化、歷程探勘、產品設計與開發

Web information、product evolution、course mining、product design and development

摘要

在現今企業競爭激烈的環境中,產品設計與開發扮演著企業成敗的重要角色,而產品設計與開發之核心在於企業是否瞭解消費者需求。過去企業為了瞭解消費者需求往往透過費時費力的大量問卷施測以及統計分析;但隨著網際網路發達與社群媒體的普及,越來越多消費者會在網路社群媒體上留下對產品的感受與訴求,這也意味著企業有著另一種不同的管道可以更有效且客觀地暸解消費者對於產品的需求。因此,如何有效地協助企業從大量的網路社群媒體資料中分析出有利於產品設計與開發之有價值的資訊實為現今企業提昇產品市場競爭優勢的重要研究課題。

因此,本研究主要目的在於利用網路社群媒體上產品之相關文章與評價內容發展一產品演化歷程挖掘與預測機制,以協助企業快速且正確地掌握產品的發展趨勢,進而有效地提供產品設計與開發時之重要參考資訊。針對上述目的,本研究主要研究項目包括: (i)網路資訊為基之產品演化歷程挖掘與預測流程設計,(ii) 網路資訊為基之產品演化歷程挖掘與預測方法發展以及(iii)網路資訊為基之產品演化歷程挖掘與預測系統實作與驗證。

Abstract

In the fiercely competitive environment, product design and development plays a critical role in the success of an enterprise, and the core of product design and development lies in the enterprise understanding consumer needs. Enterprises used to understand consumer needs through time and strength consuming questionnaire survey and statistical analyses; however, with the advance of the Internet and the popularity of social media, more and more consumers would leave the perception and appeal on online social media. It reveals a different channel for an enterprise more effectively and objectively understanding consumer needs for products. In this case, effectively assisting enterprises in analyzing valuable information beneficial to product design and development from a large amount of online social media data is an important research issue for enterprises promoting the competitive advantage in the product market.

This study develops a product evolution course mining and prediction mechanism by using the product-related articles and eWOMs on online social media to assist enterprises in rapidly and accurately grasping the development trend of products to further effectively provide important reference for the product design and development. This objective can be achieved by performing the following tasks: (i) designing a web information-based product evolution course mining and prediction process, (ii) developing a web information-based product evolution course mining and prediction method, and (iii) implementing and verifying web information-based product evolution course mining and prediction system.